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Instability of wind-forced inertial oscillations 
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(Received 2 September 1993 and in revised form 1 1  February 1994) 

An instability mechanism that can amplify wind-forced inertial oscillations in the 
upper ocean is investigated. This forced instability happens because of the phase 
relationship between the mixed-layer depth and the surface current. It allows the 
inertial oscillations propagating against the wind to extract energy from it and amplify. 
The key ingredients for the instability to work are (a)  a non-zero mean wind stress, (b) 
a spatial variability of the oscillations in the direction of the wind stress. The 
amplification is demonstrated using a simple shallow-water model in a few situations: 
the dispersion of a localized disturbance with steady and time-varying wind forcing, 
generation of inertial waves at a coast, and spatial variability induced by mesoscale 
eddies. Estimates of the growth rate are provided for both dissipative and non- 
dissipative cases. 

1. Introduction 
The surface layer of the ocean is generally well mixed in temperature and salinity 

over a depth of 1&100 m. In this mixed layer, currents are often found to oscillate with 
nearly the local inertial (Coriolis) frequency. There is a strong observational evidence 
of correlation between those energetic inertial oscillations and local intense wind 
events, starting from Day & Webster (1965). It is thus believed that inertial oscillations 
are mainly wind-driven, although the possibility of over-reflection of internal waves 
from below the mixed layer has been examined (Kamachi & Grimshaw 1984). The 
linear theory of inertial wave generation by the wind and the radiation of this energy 
at depth is now well understood (see for example Pollard 1970 or Gill 1984). Models 
have been compared with observations by Pollard & Millard (1970), Price (1981), and 
others. 

Nonlinear effects have been neglected in all those studies because it was assumed that 
the spatial scale L of the inertial oscillations was comparable with the wind stress scale 
(hundreds of kilometres) and therefore the advective timescale L/ U was large compared 
with the inertial period. 

In situ data of the mixed layer do not support that view. Starting at the end of 
the seventies, observations have revealed an unexpected variability of the inertial 
oscillations on spatial scales of order 50 km or less, much smaller than the scales of the 
local winds. Weller (1982) reported such observations made during the JASIN 
experiment. He suggested that the spatial variability between two moorings 44 km 
apart was due to the presence of a mesoscale eddy field. Indeed, simple linearized 
theory shows that the divergence of an eddy field can make inertial oscillations grow 
or decay, whereas the local vorticity shifts the apparent inertial frequency. Similar 
observations have been made recently during the FASINEX experiment (Weller et al. 
1991). 

The small spatial scale of the inertial motions warrants further investigation of the 
role of nonlinear terms in their dynamics. Nonlinear phenomena affecting the 
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propagation of internal waves are extensively covered in the literature : wave-wave and 
wave-vortical mode interactions (Lelong & Riley 199 1 ; Grimshaw 1988), internal 
solitons (Renouard, Chabert d’Hieres & Zhang 1987), breaking and critical layers. On 
the other hand, the way nonlinearity affects the generation of near inertial waves by the 
wind has seldom been considered. It is the topic of the present paper. 

Recently Klein & Treguier (1993, hereinafter referred to as KT93) studied the 
oceanic response to a steady wind stress when a geostrophic jet is present. They found 
that the wind-driven inertial oscillations in the mixed layer can amplify in some cases 
owing to a resonance phenomenon present in the nonlinear equations. The energy 
generated that way can easily propagate in the ocean interior, leading to a significant 
increase of the internal wave activity and of the mixing processes. In the present paper, 
we demonstrate that the mechanism invoked by KT93 is a much more general 
phenomenon: it is a forced instability mechanism that requires only the presence of a 
non-zero mean wind stress and the existence of a spatial variability in the inertial wave 
field. This mechanism is described in $2. In $3 we explore its robustness for two- 
dimensional coastal flows and time-varying wind forcings. Then, in 94, we extend the 
results of KT93 to two-dimensional geostrophic eddies. 

2. The instability mechanism 
The simplest model for a study of the wind-forced inertial oscillations is the 

‘shallow-water’ model. In this approximation, the upper ocean is made of an active 
layer with reference uniform depth h, at rest, lying over an infinitely deep (motionless) 
bottom layer. The active layer is vertically well-mixed with uniform density and 
horizontal velocities u and u. The equations on anf-plane, in Cartesian coordinates are 

I a u  au au 7, ah 
--fu+u-+u- = --gg‘-+vv2u, 
c‘t ax ay h ax 

h is the mixed-layer depth, g’ = gAp/p is the reduced gravity, with Ap the density jump 
between the two layers. The internal Rossby radius of deformation R = (g’h,)’/2//fis a 
natural lengthscale of the problem. 7, and 7y are the components of the wind stress 
divided by density, expressed in units of m2 s-’. Laplacian friction with a dissipative 
coefficient v has been introduced, following Gill (1984), to parameterize the vertical 
propagation of the inertial waves in the deeper layers that occurs in a continuously 
stratified ocean. Turbulent entrainment at the base of the mixed layer, that generates 
a damping effect roughly similar to the Laplacian friction, is not considered here for 
simplicity. Without loss of generality we assume that the wind blows in the x-direction, 
e.g. ry = 0. 

Let us consider the response to a steady, spatially uniform wind switched on at t = 0. 
When the advective and dissipative terms are neglected and 7,.h is replaced by r,.h, 
the linear response consists of a mean Ekman drift and free inertial oscillations. When 
the initial conditions vary in space, there are also free propagating inertial waves. Their 
frequency is given by the familiar dispersion relation : 

w2 = f 2 + C Z ( k 2  + P) ,  (2) 
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with c = (g’ho)li2. This solution is labelled as the zero-order solution. 

2.1. Linear theory 
A better knowledge of the dynamics of the wind-forced inertial motions can be gained 
through a detailed examination of the linearized equations obtained by retaining the 
dominant terms in (1). For that purpose, let us consider a dimensional analysis using 
a velocity scale, U ,  associated with the Ekman drift (us = 7,/fh0), the lengthscale, L, 
associated with the spatial heterogeneity of the waves and f-’ as a timescale. We 
assume, first, that the Rossby number associated with the inertial waves, defined as 
E = U/fL,  is small (i.e. e 4 1). Secondly, the damping rate associated with the dissipative 
terms is supposed to be small (i.e. v[fL2 = O(e)). Then, using an expansion in e for h, 
a dimensional analysis of the mixed-layer depth equation leads to the order O(e2):  

h z h,+h’, 

with h‘/h? = O(E). Using the same dimensional analysis for the momentum equations 
and keeping only the resonant terms (i.e. with the wave-wave interactions terms 
neglected), the resulting linearized equations are (when only terms of order O(1) and 
O(E) are retained): 

av /  av/ ah’ 
-+fu‘+v,- = -g’-+vVZv’, 
at 3Y ay 

( 3 )  

-=-h, ah‘ (E -+- &’), 
at 

where u‘ = u and Y‘ = v-us, with v, the Ekman drift velocity. 
We look for solutions like exp (i(kx + ly - ot)) .  Then, using the non-dimensional 

variable : X = (w-  u, 1 + ivK2)/f with K2 = k2 + 1 2 ,  we get the following dispersion 
relation : 

with R = (g’h,)li2/f the internal Rossby radius. From the dimensional analysis, the 
terms u, l/J vK2/f and (7,/f2h,,) k are of order O(e). So let us consider a solution like : 
X = X,, + ex, + O(2) .  From (4) we get: 

( 5 )  
- = ( l + R  w 2K2 ) +L v 1 3 + R 2 K 2  vK2 2+R2K2 7,k  
f 2f (  1 + R2K2)-if(  1 +R2K2)-ifzh,,(l + R2K2)’I2’ 

The first two terms on the right-hand side of ( 5 )  represent respectively the classical 
frequency departure from f owing to the isotropic dispersion, and the Doppler shift 
induced by the Ekman drift. The third (imaginary) term is the classical damping rate 
due to dissipation. The last term is new and can affect dramatically the dynamics of the 
system. It represents a growth or damping rate depending on the sign of 7,k.  More 
precisely, amplitudes of waves that propagate against the wind (7,k < 0) can grow 
exponentially. On the other hand, waves that propagate in the wind direction (7,k > 
0) should be damped. Waves propagating perpendicular to the wind are not affected 
by this term. This dispersion relation therefore reveals a forced instability of the inertial 
waves. Coming back to the linearized equations (3 ) ,  a more precise examination shows 
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Run Forcing 

D1 r / h  
D2 r /h ,  
D3 r / h  
D 4  (T+r’)/h 

0 1  T/h, 
0 2  7 /h  
0 3  7 /h  

A0 7/h,  
A1 T/h 
A2 r /h  
A3 T/h 
CO r/h, 
Cl T/h 
C2 T/h 
C3 r /h  

Parameters Non-dimensional 

Equations g’ hll 7 

Linearized 2~ 10-3 30 1.5 x 10-4 
Linearized 2~ 10-3 30 1.5 x 10-4 
Nonlinear 2~ 10-3 30 1 . 5 ~  10-4 
Nonlinear 2~ 10-3 30 1 . 5 ~  10-4 

Nonlinear 2 x 10-3 30 1.5 x 10-4 
Nonlinear 2~ 10-3 30 1 . 5 ~  10-4 

Nonlinear 2~ 10-3 30 1.75 x 10-4 
Nonlinear 2~ 10-3 30 1.75 x 10-4 
Nonlinear 2x10-3 30 1 . 5 ~  10-4 
Nonlinear 2~ 10-3 30 1.75 x 10-4 
Nonlinear 2~ 10-3 30 1 . 7 5 ~  1 0 - 4  
Nonlinear 2 x  10-3 30 i .75x  10-4 
Nonlinear 2~ 10-3 30 1.5 x 10-4 
Nonlinear 2~ 10-3  30 1 . 7 5 ~  10-4 

Dispersion of a patch 

Coastal cases 

Nonlinear 1 x ~ O - ~  50 6 x  low4 

Cyclonic (C) and anticyclonic (A) eddies 

V 

10 
10 
10 
10 

50 
50 
20 

50 
50 
50 

200 
50 
50 
50 

200 

T* 

0.2 
0.2 
0.2 
0.2 

0.2 
0.2 
0.17 

0.24 
0.24 
0.2 
0.24 
0.24 
0.24 
0.2 
0.24 

V* 

0.017 
0.017 
0.017 
0.017 

0.083 
0.083 
0.004 

0.083 
0.083 
0.083 
0.33 
0.083 
0.083 
0.083 
0.33 

TABLE 1. List of experiments. Units are m s - ~  for the reduced gravity g’, m2 s-* for the wind stress 7 ,  

m for h, and m2 s-’ for the Laplacian friction v .  T* and v* are defined in the text. For all experiments, 
the Coriolis frequency is f = s-l. See $3.1 for the definition of variable wind stress T’ in 
experiment D4. 

that its origin is the forcing term ~ , / h  present in the u-equation. In many studies 7 , / h  
is approximated as 7Jh0 and therefore is considered as a constant forcing term. From 
our results, taking into account the h-variations in the forcing term triggers an 
instability mechanism of the inertial waves that, to our knowledge, has not been 
documented in the literature before KT93. 

2.2. Numerical results 
In order to confirm the existence of this forced instability mechanism and to better 
assess its effects, we have performed several numerical simulations using the linearized 
equations (3) as well as the fully nonlinear equations (1). The parameters of these 
experiments (labelled D1 to D3) are described in table 1. 

Equations have been discretized using a standard finite-difference method on a 
staggered C-grid in a doubly periodic domain. The situation we consider is the 
dispersion of a localized Gaussian kinetic energy perturbation, in the presence of a 
uniform steady wind stress. The value chosen for the stress (7, = 1.5 lo-‘ m2 sc2) 
corresponds to an eastward wind speed of about 10 m s-’. Initial conditions are: 

h, = 30 m, v,, = 0, uo = 0.O5exp(-(x2+y2)/h2). (6) 

The scale of the initial disturbance is h = 12 km, the size of the domain 400 km, the 
boundary conditions are periodic. The Rossby radius wavelength is 2nR = 15.4 km, 
and the ratio h/2nR is close to 1. The fluid is almost inviscid : with v = 10 m2 s-l, the 
frictional timescale h 2 / v  is large (166 days) compared to the inertial period (17.5 h). All 
numerical integrations of (1) and (3) have been done with the same parameters and 
initial conditions. 



Instability of wind-forced inertial oscillations 327 

400 

300 

I 
I I I I 

0 100 200 300 400 
Distance (km) 

FIGURE 1 .  Kinetic energy integrated over the mixed-layer depth for the initial condition (15). 
Contour interval is 0.01 m3 s - ~ ,  lower contour is 0.001. 

Let us describe first the numerical solution D1 obtained with the linearized equations 
(3) .  Initially the kinetic energy perturbation is localized near the centre (figure 1). After 
one inertial period, there is a background energy related to the spatially uniform 
inertial oscillations. Its value, averaged over an inertial period and integrated over the 
mixed-layer depth is 7 i / f 2 h ,  = 0.75 10-1 m3 s-'. Later on the perturbation tends to 
spread isotropically. However, a patch of more energetic initial waves appears on the 
west side of the perturbation at t = 2 inertial periods. The kinetic energy of these waves 
increases while they propagate in the southwest direction. In this patch, the local 
maximum of the kinetic energy (averaged over one inertial period) is larger than the 
background energy by a factor of 2 at t = 10 and a factor of 3 at t = 15 inertial periods 
(figures 2a and 2b). The southward component of the patch propagation is simply due 
to the advection by the mean Ekman drift v = -7,/fho. But the westward component 
of the patch propagation (against the wind) as well as the related kinetic energy growth 
are consequences of the instability mechanism described previously. 

In order to confirm that the forcing term 7 , / h  is indeed responsible for the energy 
growth, experiment D2 has been made with the same parameters and equations (3) but 
using 7Jh0  as a forcing term instead of 7 J h .  The inertial waves dynamics (figure 3) is 
strikingly different: the kinetic energy maximum at t = 15 inertial periods is equal to 
the one at the first inertial period, i.e. very close to the background energy (note that 
the contour interval on figure 3 is 8 times smaller than on figure 2b). The perturbation 
has spread out in a circular pattern because of the radial wave dispersion. These results 
confirm that the forcing term 7,.h is responsible for the energy growth. 

With the parameter settings used, the theoretical growth rate (deduced from ( 5 )  and 
assuming that I = 0) is equal to z 0.06f. We have estimated a growth rate from the 
numerical results of the first experiment, using the time evolution of the amplitude of 
the mixed-layer depth variations as well as the one of the maximum velocity of the 
inertial waves. Amplitude of the mixed-layer depth variations is 3.5 m during the tenth 
inertial period and 10 m during the fifteenth inertial period. This leads to a growth rate 
of 0.033J The velocity amplitude has a maximum value equal to 0.084 m s-l at t = 10 
and 0.14 m s-l at t = 15 inertial periods, leading to a growth rate of 0.016f. These 
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FIGURE 2. Kinetic energy (integrated over the mixed-layer depth and averaged one inertial period) for 
experiment D1, (a) at t = 10 inertial periods and (b)  at t = 15 inertial periods. Contour interval is 
0.02 m3 s - ~ .  The shaded area shows energy levels higher than 0.08 m3 ss2. The wind direction is 
indicated by an arrow. 

growth rates are significant but smaller than the theoretical one. One reason is that the 
theoretical one is calculated assuming the optimal situation : that is, the waves are 
assumed to be purely zonal and monochromatic. This is not true in the situation 
considered. Indeed, at least during the first inertial periods, the most unstable wave is 
not large enough to dominate the contribution of all other Fourier components to the 
amplitudes of h and u. 

A last numerical simulation (D3) using the fully nonlinear equations (1) has been 
performed in order to assess the effects of the nonlinear advective terms neglected in 
(3), and in particular the effects of the wave-wave interactions. The kinetic energy plot 
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FIGURE 3. Kinetic energy (integrated over the mixed layer depth and averaged one inertial period) at 
t = 15 inertial periods for experiment D2. Contour interval is 0.0025 m3 ss2. The shaded area shows 
energy levels higher than 0.08 m3 s?. The wind direction is indicated by an arrow. 

at t = 15 (not shown) is almost identical to figure 2(b).  This means that the linearized 
equations (3 )  capture most of the physics of the system : the wave-wave interactions do 
not affect significantly the instability mechanism. 

2.3. Physical explanation 
A physical understanding of the instability mechanism can be gained by studying the 
energy balance. We derive a domain-integrated energy equation from the linearized 
system ( 3 )  by multiplying the momentum equations by h, u’ and h, u’, respectively 
(u’, v’ is the velocity with the mean Ekman drift substracted): 

This equation shows that the energy growth (of order E,  since h’/h, = O(e)) results from 
the correlation of h’ and u’. This was explained in KT93 and is illustrated by figure 4. 
For classical linear inertial oscillations there is no growth because h = h, and the 
average of u over one inertial period is zero. For inertial waves solution of (3) ,  let us 
consider first waves with k7, < 0. The phase of h’ and u’ for those waves is such that 
h’ is minimum when u’ is in the same direction as the wind, and maximum when u‘ is 
against the wind, leading from (7) to an energy growth. For waves with k7, > 0 the 
situation is reversed and leads to a net energy loss. 

In the nonlinear case, the total energy equation is obtained by multiplying the 
momentum equations by hu and hv, respectively: 

In that case the energy growth is not simply related to the (u’, h’) correlation but rather 
results from the existence of a time- and domain averaged velocity U. Such a velocity 
averaged in time and space over the periodic domain cannot exist when the nonlinear 
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1 t = O  I 'i t =  +T 

t= 4T ri pl 
FIGURE 4. Sketch of the inertial resonance mechanism (reproduced from Klein & Treguier 1993). 

T represents an inertial period. (a) Linear case. (b)  Nonlinear k7, < 0. (c )  Nonlinear k7, > 0. 

advective terms are discarded (this is readily shown by integrating the momentum 
equations over the domain). A time-mean zonal flow u in the direction of the wind 
stress is found indeed in nonlinear experiment D3, but it is negligible in linearized 
experiment D1. Even though it leads to a significant energy growth in D3, ii is rather 
weak (the local maximum is 0.01 m s-' during the 15th inertial period). Moreover it is 
not uniform in space : the positive domain-average results from a complicated pattern 
of positive and negative values. In fact, (8) shows that small domain-averaged mean 
velocities can generate a large energy growth. For the parameters of our experiments, 
a doubling of the initial kinetic energy could be obtained in one inertial period with a 
domain-averaged zonal velocity of only 0.008 m s-l. The main symptom of the 
instability mechanism is therefore the energy growth of the oscillations, rather than a 
mean flow generation. 

2.4. Characteristics of the unstable waves in dissipative systems 
2.4.1. Growth rate 

From ( 5 )  the growth of the wind-forced inertial waves triggered by the instability 
mechanism can be significantly affected, and even cancelled, by the dissipative 
mechanisms. Note again that the Laplacian friction present in (1) has been introduced 
to implicitly parameterize the vertical propagation of the inertial waves in the deeper 
layers that occur in a real stratified ocean. The competition between the instability 
mechanism (proportional to the horizontal wavenumber) and the dissipative 
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mechanisms (proportional to the square of the horizontal wavenumber) leads to a 
lengthscale selection that is a function of the magnitude of the wind stress and of the 
dissipative coefficient v. In order to assess this scale selection, the effective growth rate 
displayed by ( 5 )  (i.e. the two imaginary terms) has been rewritten with the forcing and 
dissipative parameters 7, and v non-dimensionalized as: 7: = 7,/(Rh,f2), and v* = 
v / ( R Y )  with R the Rossby radius defined as before. The wavenumbers are non- 
dimensionalized as: (k*, I*) = ( k R ,  IR). The effective growth rate y / f  is: 

2.4.2. Discussion 
The parameter settings used in this study involve  values that range from 0.1 to 

0.4. These values can be attained with a wind stress varying between lop4 m2 s - ~  and 
6 x m2 s - ~  (wind speed of 10 to 25 m s-'), and with a shallow mixed layer of 30 m 
corresponding to a Rossby radius of deformation of between 2 km and 8 km. v* is 
between 0.002 and 0.2, if one assumes that the v-values can vary between 20 m2 s-l (for 
a sharp and thin seasonal thermocline) and 200 m2 s-' (for a thick seasonal 
thermocline) (see Gill 1984 and KT93). From (9), waves with a propagation parallel to 
the wind stress (i.e. with 1 = 0 in the situation considered) are the ones for which the 
growth rate is the largest. So let us consider this situation and let us examine first the 
growth rates for different values of v* in the particular case 7* = 0.2 (figure 5a). From 
the marginal curve (corresponding to y / f  = 0) the wavenumber k* of the unstable 
waves can vary between 0 and - 1 when the dissipation is large (i.e. for T*/V* < 2). The 
width of the unstable region increases when the dissipation decreases, and in the 
inviscid limit all negative wavenumbers are unstable. However, the wavenumber 
associated with the most unstable wave does not vary so much: it goes from k* = -0.5 
when 7*/v*  = 2 to k* = - 1.2 when T*/u* = 10. Therefore, for a large range of 
variation of 7* /v* ,  the wavelength of the most unstable wave is of the order of the 
Rossby radius wavelength. We have checked through a detailed examination of (9) that 
these results hold for the  values between 0.1 and 0.4. 

For a given value of 7*, the maximum growth rate strongly depends on the 
dissipation coefficient v*. For example, with 7* = 0.2 (figure 5a), it goes from 0.012 
(when 7*/v*  = 1) up to the upper limit 7*/2 = 0.1 (when v* = 0). Figure 5(b) shows 
the contours of the maximum growth rate as a function of 7* and v*. If we choose 
(arbitrarily) y / f  = 0.02 as a value large enough for the instability mechanism to 
produce significant effects, this figure reveals that the instability mechanism can affect 
the mixed-layer dynamics for a large range of 7* and v*-values. The only constraint is 
the wind stress duration. When y / f  = 0.02 a wind stress duration of about 6 inertial 
periods is required for the mixed-layer amplitude to be multiplied by 2. This duration 
is reduced to only 2 inertial periods when y / f  = 0.06. 

The order of magnitude of the maximum growth rate is well described by the 
empirical formula : 

I&='( 7 * / v *  ) 
f 2 8 + ( 7 * / v * )  

This expression has been established by matching in the simplest fashion the upper 
limit, ;7*, for very weakly dissipative systems and the lower limit, T * ~ /  16v*, for more 
dissipative systems. Let us stress that (10) is empirical and gives only an upper bound 
of the real energy growth that will occur in realistic, nonlinear situations. Indeed the 
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FIGURE 5. (a) Non-dimensional growth rate (from (9) with 1* = 0) as a function of the wavenumber 
k* and the dissipation coefficient v* for T* = 0.2. The shaded area is the unstable region with growth 
rate larger than 0.01. (b)  Maximum non-dimensional growth rate (from (9) with I* = 0) as a function 
of T* and v*. 

expression of this maximum growth rate that results from the linear theory assumes 
that the waves are monochromatic and that their wavenumber is parallel to the wind 
stress. 

3. Robustness of the instability mechanism in simple oceanic situations 
3.1. Effect of a time-varying wind stress 

Consequences of the instability mechanism have been examined so far in the case of 
steady winds. It also happens with fluctuating winds, provided the time-mean is non- 
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FIGURE 6. Kinetic energy (integrated over the mixed-layer depth and averaged one inertial period) at 
t = 15 inertial periods for experiment D4. Contour interval is 0.05 m3 s-*. The shaded area shows 
energy levels higher than 0.25 m3 s-*. The wind direction is indicated by an arrow. 

zero and of the same order as the fluctuations. This is demonstrated by repeating 
experiment D3 with a fluctuating wind stress (D4). A random wind stress series is 
generated, with the same steady component as the one considered before (i.e. = 
1.5 x lo-' m2 s-', 7y = 0) and with variable components with r.m.s. amplitudes A(7,), 
A(7J in both directions. Usually, the wind stress strength varies more than its direction. 
To model this effect we choose A(7,) = 1.5 x m2 s-', and a smaller value A(7J = 
0.5 x m2 s - ~ .  The wind stress fluctuations in both directions are represented by 
Markovian processes of characteristic time 2 h as in Treguier & Hua (1987). The 
numerical results reveal that the background energy averaged over an inertial period 
(related to the spatially uniform inertial oscillations) is no longer constant and has a 
maximum amplitude larger by a factor of 3 than the one related to the steady wind 
stress case. This is entirely due to the wind stress fluctuations (see Gill 1982). However, 
despite this difference, the response to this fluctuating wind stress in the nonlinear case 
appears to be qualitatively similar to the steady wind stress case: the initial 
perturbation starts to spread away in a circular pattern, but a patch of more energetic 
inertial waves appears on the west side of the perturbation after the first inertial period. 
The maximum of the kinetic energy (averaged over an inertial period) of this patch 
steadily increases while the related inertial waves propagate westward (figure 6). Quite 
remarkably, the time evolution of the maximum h amplitude in experiment D4 is very 
close to experiment D1 (steady wind stress case), i.e. 3.6 m during the tenth inertial 
period and 11 m during the fifteenth. This represents an effective growth rate of 0.035f. 
The maximum velocity increases from 0.12 m s-l to 0.22 m s-' within five inertial 
periods, leading to an effective growth rate of 0.019A again quite similar to the steady 
wind stress case. 

So it appears that the instability mechanism is not sensitive to the wind stress 
fluctuations insofar as these fluctuations have a typical timescale smaller than the 
inertial period. Only the mean wind stress, i.e. the average over several inertial periods, 
is important for the instability mechanism to work. This feature has been checked with 
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a numerical simulation similar to the preceding one but involving only the wind stress 
fluctuations (the mean value was set to zero). In that case the numerical results have 
not displayed any difference using 7,/h or 7 , /h ,  as a forcing term; which means the 
instability mechanism does not occur in the absence of a mean wind. 

The effect of a wind varying both in space and time has also been investigated. Such 
a wind field can, by itself, generate instability since the forced response has a non-zero 
wavenumber k .  However, the wind stress scales are rather large (more than 200 km) 
and experiments using a realistic space-time wind spectrum as the only source of 
spatial variability show little difference between the 7 , / h  and 7, /h,  cases. The main 
effect of instability in those cases is qualitative rather than quantitative: a systematic 
propagation towards the mean wind and smaller spatial scales of the response are 
observed, but the energy growth in the upper layer remains unsignificant. 

3.2. Inertial waves generated at a horizontal boundary 

Wind-induced inertial waves generated at a horizontal boundary (such as a coast) have 
a wide spectrum of horizontal scales, and therefore some of them can be affected by the 
instability mechanism. 

One classical example of such a situation is the response of a coastal ocean to a 
sudden impulsive cross-shore wind stress. This situation is usually idealized through a 
1;-layer ocean bounded by an infinite coast coincident with the y-axis. An offshore 
wind perpendicular to the coast suddenly arises at t = 0. The ocean response is 
characterized by a wind set-up and an associated ’pulse’ of internal waves with a wide 
wavenumber spectrum. The wind set-up consists of piling up water in the top layer 
against the leeward coast, with a spatial scale equal to the Rossby radius of 
deformation, R, defined in the preceding section. Later on the wind set-up remains with 
a distance of order O(R)  from the coast, but the pulse of inertial waves propagates with 
the shortest waves propagating the fastest (Millot & Crepon 1981). 

This situation was fully investigated by Crepon (1 969) using a linear model (see also 
Csanady 1982). From the linear equations, a time-independent solution, which 
characterizes the wind set-up, is : 

h(x) = 7, exp ( - x / ~ )  + h,. 
.f(g’ho)1’2 

Note that (1 1) holds for both offshore and onshore winds. The time dependent part of 
the linear solution includes wind set-up variations and, mainly, inertial oscillations of 
slowly decaying amplitude. The decay comes about through a dispersal of waves to 
infinity. Arhan (1973) used a nonlinear model to examine the same problem. He found 
the decaying response for the case of a wind blowing away from the shore. However, 
for a wind blowing towards the shore, his numerical results display a propagating front 
of internal waves with amplitude strongly growing rather than decaying. 

We have calculated similar solutions using the equations (1) in the one-dimensional 
version (i.e. with d/dy = 0). Two solutions have been calculated: one (01) with the 
forcing term approximated as 7 J h ,  and the other one (02) with the full forcing term 
7 J h .  The parameters correspond to 72 = 0.2, u* = 0.08 and to a Rossby radius of 
deformation R z 2.45 km (table 1). 

When the forcing term is approximated as 7,/h0, inertial oscillations with decaying 
amplitude propagate offshore (figure 7 a ) .  This solution is very close to the one found 
by Crepon (1969). The wind set-up attains 7 m near the coast, but there is no significant 
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FIGURE 7. Mixed-layer depth perturbation h-h, as a function of distance from the coast at different 
times for (a) experiment 0 1  and (b)  experiment 0 2 .  The wind direction is indicated by an arrow. 

mixed-layer depth variation at a distance larger than 30 km from the coast. The kinetic 
energy does not increase. With the full forcing term T,/h taken into account the wind 
set-up near the near the coast is similar but there is a conspicuous ‘exponential-like’ 
growth of the inertial waves amplitude while they propagate away from the coast: the 
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mixed-layer depth variation displays a sequence of upwellings and downwellings with 
an amplitude larger than 10 m at a distance of 100 km at 15 inertial periods (figure 7b) .  
Note that, at this time, the wavelength corresponding to the largest amplitude is about 
30 km. The energy growth of the ‘pulse’ of inertial waves propagating off the coast 
clearly results from the instability mechanism. 

Referring to the linear theory and to figure 5(b) ,  the most unstable waves should 
have a theoretical effective growth rate y z 0.026f and a wavenumber k* z 0.53 
corresponding to a wavelength equal to 30 km, which compares well with the 
numerical results (figure 7 6) .  The mixed-layer depth maximum amplitude (i.e. 
amplitude of the downwellings) varies from 3.5 m during the tenth inertial period to 
7.6 m during the fifteenth inertial period. This leads to a growth rate of M 0.024f, close 
to the theoretical one in this one-dimensional case. One feature, not observed in the 
preceding experiments, is the fact that upwellings are smaller than downwellings (figure 
7 6 ) ;  hence a smaller growth rate for their amplitude. We have checked numerically that 
this is due to the asymmetric effect of the nonlinear advective terms on the upwellings 
and downwellings. These nonlinear advective terms are much efficient in this coastal 
situation (compared with the experiments of $2.2) because the mixed-layer depth varies 
more relative to its initial value. The maximum amplitude of the velocity associated 
with the inertial waves varies between 0.1 1 m s-l during the tenth inertial period to 
0.16 m s-’ during the fifteenth inertial period; hence an effective growth rate of 
z 0.012h smaller than the theoretical one. In addition to the arguments invoked 
before, the effects of the nonlinear advective terms explain these smaller growth 
rates. 

Another case (03), more appropriate to the coastal ocean and close to the 
one considered by Arhan (1973),-has been simulated with r j  M 0.17, v* M 0.004 (i.e. 
r:/v* = 40) and R M 7 km. Note that the amplitude of the wind set-up is equal to the 
preceding one (i.e. z 7 m). With the full forcing term r,/h taken into account, there is 
again an ‘exponential-like’ growth of the inertial waves (figure 8). This growth is much 
larger than in the previous case: mixed-layer depth variations attain 16 m after 5 
inertial periods at a distance of 180 km from the coast. The wavelength of the largest 
wave appears to be between 20 km and 30 km, not far from the theoretical value of 
25 km. From the linear theory, the effective growth rate with this parameter settings is 
y z 0.064f. This agrees with the growth of the maximum downwelling amplitude 
(O.O62f), while the growth of upwellings and the maximum velocity is again smaller. 

Finally, similar simulations with the full forcing term 7, /h  taken into account but 
with the wind blowing offshore have been performed. In that case (not shown), the 
internal waves propagating offshore have a negative growth rate since kr, > 0 and they 
are very quickly damped. 

These results reveal that the instability mechanism affects significantly the coastal 
oceanic response to a wind stress. Besides the favourable parameter settings, one 
reason is the rapid appearance (within one inertial period) of a ‘pulse’ of inertial waves 
with a wide wavenumber spectrum because of the presence of the coast. Hence the 
existence of an initial spatial variability of the inertial oscillations. However, a wind 
stress duration of at least several inertial periods is required to observe a significant 
growth of the inertial waves. The linearized instability theory appears to give useful 
information about the characteristics of the unstable waves in particular about their 
wavelength and the maximum amplitude of the mixed depth variations. The non- 
negligible effects of the nonlinear advective terms explain that the effective growth rate 
of the r.m.s. velocity is not so large as the one given by the linear theory. 
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FIGURE 8. Mixed-layer depth perturbation h-h,  as a function of distance from the coast at 
different times for experiment 0 3 .  

4. The instability in presence of geostrophic eddies 
Oceanic jets and eddies are characterized by spatial scales from 20 to 200 km and 

timescales of a few months. Those mesoscale structures induce a significant spatial 
variability of the inertial waves (Kunze 1985). Therefore, they can trigger the wind- 
forced instability described in this paper. This was first demonstrated by KT93 for the 
case of a geostrophic jet uniform in the downstream direction. Here we extend those 
results to the case of a two-dimensional geostrophic eddy. 

The equations we consider are based on (1). We assume that a geostrophic, non- 
divergent current U, V exists in the mixed layer and below, and that this current is 
steady in time. The equations for the inertial velocities u, v must take into account the 
nonlinear interactions with the geostrophic flow: 

- - ( f -$)v+uz+(u+ au c?U U)-+(v+ al4 V ) -  au = --g--+vV~u, r, A p a h  (12) 
at ax ay h p ax 

a0 av r Apah  U)-+(V+ V ) -  = J-g--+vV2U, (13) 
ax aY h P ay 

= 0. 
ah -+ 
at ax aY 

ah(u + U )  + ah(v + V )  

The geostrophic flow considered is a Gaussian eddy, defined by 

(15) 
a$ a$ $ = $,,exp(-(x2+y2)/h2), U = --, V =  -. 
c?y ax 

With h = 32 km, and $,, such that the maximum velocity is VM = 0.2 m s-l. Figure 9 
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FIGURE 9. Non-dimensional vorticity {/f for a circular Gaussian cyclonic eddy. Contour interval 
is 0.02, the dashed lines is the negative contour -0.01. 

represents the non-dimensional vorticity field in a cyclonic eddy. Note that the eddy 
core is surrounded by an annulus of vorticity of the opposite sign. 

The strain and vorticity components of the geostrophic flow produce two important 
effects on the wind-driven inertial oscillations (Klein & Hua 1988). First, they affect 
their amplitudes and in particular the mean Ekman drift whose components are: 

As a consequence the mixed-layer depth can be significantly affected because of the 
non-zero Ekman divergence. On the other hand, the vorticity components modify the 
frequency of the inertial motions. This effect occurs through an effective Coriolis 
frequency, f,, that replaces the Coriolis frequency in the dispersion relation : 

.f,(x> = (.f(f+ <(:(x>)>1'2, (16) 
with < = aV/c?x-?U/c?y the vorticity of the geostrophic flow. Since the phase of the 
inertial oscillations ot depends on x throughf,, one consequence is an increasing 
spatial variability of the inertial motions that can be understood using a local 
expansion of the phase (Kunze 1985): 

W ( X )  t M ~ ( 0 )  t af, +-xt+-yt+ aL . . . , 
ax ay 

z w(0) t - kx - / y ,  

where (k ,  I }  = { - t(l??/d.x), - t(ah/aY)} can be considered as the time-varying wave- 
number that characterizes the spatial variability of the inertial waves. 

In this situation, inertial waves can be affected by eddy dynamics as well as the forced 
instability mechanism. Experiments A0 and CO (table 1 )  were performed using 
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equations (12)-(14) with the forcing term approximated as r,/ho in order to isolate the 
former effect. 

4.1. EfSects of the Ekman drift divergence 
In the presence of a geostrophic flow, the divergence of the mean Ekman drift may 
induce systematic upwellings and downwellings and therefore modify the mixed-layer 
depth significantly. Such phenomena were first discussed by Niiler (1969) for a 
geostrophic jet. For a geostrophic eddy, such as the ones considered here, the 
divergence of the mean Ekman drift is 

Hence, with eastward wind, the core of a cyclonic eddy displays a large upwelling in 
its southern part and a large downwelling in its northern part as shown in figure 10(a) 
(experiment CO). Note that the ring of negative vorticity around the cyclonic eddy is 
associated with a smaller upwelling (downwelling) farther north (south). The situation 
would be reversed in an anticyclonic eddy. The initial rate of upwelling or downwelling 
for the Gaussian eddy is estimated as: 

ah VM 7, - 
at h2f2 
- z 6-- - 1.8 m/day. 

Indeed numerical results show that a depth close to 1.3 m is reached at the end of the 
first inertial period (figure 10a). 

In the case of a rectilinear jet (for instance, U = 0 and a/ay = 0), those upwellings 
and downwellings persist at a constant rate when the wind is steady. However, in the 
case of an eddy, there are additional terms Uah/ax and Vah/ay in the mass equation 
(14). After a time comparable to the eddy timescale A/VM z 2 days, we find that the 
upwellings and downwellings are inhibited by the advective effects. Using (18) with the 
eddy advective terms taken into account, the estimated maximum value attained for 
the depth variations is therefore of the order: 

This shows that a steady wind stress over geostrophic eddies does not produce 
systematic upwelling and downwelling effects, contrary to the case of a geostrophic jet 
as examined by Niiler (1969). After the first inertial periods, the pattern of h becomes 
very complicated and small-scale features appear, but the amplitude does not grow 
(figure lob). 

4.2. EfSects of the eddies on the inertial wave dynamics 

Let us now examine the specific effects of the eddy dynamics on the evolution of the 
inertial oscillations as revealed by the numerical experiments CO and AO. 

Inertial oscillations are established in the upper layer from the first inertial period. 
Let us stress again that the eddy vorticity affects their amplitude in the same way as for 
the mean Ekman drift. The r.m.s. velocity, roughly proportional to r,/[h,(f- i3U/3y)], 
is minimum in the core of a cyclonic eddy with two maxima north and south (figure 
11 a), whereas the situation is reversed in an anticyclonic eddy. Furthermore, the eddy 
vorticity shifts the local frequency 'seen' by the inertial oscillations. As noted before, 
this leads to a growing spatial variability with a time-dependent ' wavenumber' 
proportional to the vorticity gradient (17). Expression of the resulting group velocity 
(proportional to this wavenumber) shows that the energy should concentrate in 
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FIGURE 10. Mixed-layer depth perturbation h - h, for experiment CO, (a) at the end of the first inertial 
period. Contour interval is 0.3 m with minimum contour - 1.35 m ;  (b) at the end of the 20th inertial 
period. Contour interval is 0.5 m with minimum contour -2.25 m. The shaded area indicates 
downwelling. The wind direction is indicated by an arrow. 

negative vorticity regions, for example in the core of the anticyclonic eddy. On the 
other hand, the energy flux should be directed outwards in a cyclonic vorticity region 
(see Kunze 1985 for more details). 

Let us examine first the cyclonic eddy case (experiment CO). As expected an energy 
minimum appears within the eddy core during the first inertial period (figure 11 a). It 
is associated with two energy maxima located north and south within the negative 
vorticity ring surrounding the core. Later on, the kinetic energy within the eddy core 
decreases (up to 50 % within 20 inertial periods) because the vorticity is positive there, 
leading to the expulsion of the inertial oscillations. When the nonlinear terms involving 
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FIGURE 12. Experiment AO: kinetic energy (integrated over the mixed-layer depth and averaged one 
inertial period). The shaded area indicates energy higher than the background (> 0.11 ms s-'). 
Contour interval is 0.03 m3 s?. (a) At t = 10 inertial periods; (b) at t = 20 inertial periods. 

products of u and v (wave-wave interactions) are discarded, the two energy maxima 
spread around the core in a circular pattern. In the fully nonlinear case their evolution 
is more complicated. The energy maximum located initially on the south edge of the 
eddy ring quickly disappears. The one on the north side increases (up to twice its initial 
value after 20 inertial periods), rotates around the eddy, and finally remains locked on 
the southwest side (figures 11 b and 1 1 c) while its amplitude slightly increases (see curve 
CO in figure 13). The energy appears to be trapped within this maximum, whose exact 
location depends on the magnitude of the eddy velocity and of the radial propagation 
induced by the eddy vorticity as well as on the Ekman drift: for example, when the 
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averaged over successive inertial periods, in m3 sP) for experiments AO, Al ,  CO, and C1. 

eddy velocity and vorticity are twice as big, this maximum is locked on the south edge 
of the eddy. Finally, note that in experiment CO the maximum amplitude of the mixed- 
layer depth variation is 5 m (figure lob). 

Numerical results with an anticyclonic eddy (experiment AO), when compared with 
the preceding case, display an antisymmetric kinetic energy distribution during the 
first inertial period : there is an energy maximum in the negative vorticity core region 
and two minima north and south of the positive vorticity ring surrounding the eddy 
core. Later on the two minima disappear but after 6 inertial periods some inertial waves 
have escaped from the ring and propagate radially outside the eddy (figure 12a). Inside 
the negative vorticity core the kinetic energy maximum oscillates (figure 13, curve AO). 
This time evolution can be explained from the propagation of the inertial waves: 
because of the radial symmetry, these waves first propagate towards the centre and 
then propagate towards the edges after some time T. On the analogy of the 
propagation of a circular wavefront, this time T can be roughly estimated as the ratio 
of the eddy radius to the group velocity. Later on the energy is reflected off the edge 
of the eddy and starts to propagate again towards the centre. Such reflections at the 
boundary of the negative vorticity region are discussed by Kunze (1985). Therefore the 
energy maximum within the eddy core behaves as a damped oscillator. Figure 12(b) 
shows the kinetic energy during the 20th inertial period. The concentration of the 
energy maximum is made clear by a comparison with the core shape during the first 
inertial period (which is antisymmetric to figure 11 a). Note also that the inertial energy 
that has escaped from the eddy is larger at that time than in the cyclonic case. The 
southward shift of the energy distribution is due to the Ekman drift. 

4.3. EfSects of the forced instability mechanism 
Two experiments A1 and C1, similar to A0 and CO but with 7,.h as the forcing term 
in (12), have been performed in order to assess the effects of the instability mechanism. 

Let us examine first the situation with an anticyclonic eddy, experiment Al .  The 
kinetic energy distribution maps of A1 display the same time evolution as A0 during 
the first 5 inertial periods. At t = 10 inertial periods a patch of inertial waves has 
escaped outside the eddy, but only the ones propagating upwind (westward) have 
survived (figure 14a). Their kinetic energy has a maximum value of x 0.13 m3 s-' at that 
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FIGURE 14. Experiment A1 : kinetic energy (integrated over the mixed layer depth and averaged one 
inertial period), with the shaded area indicating energy higher than the background (> 0.11 mS ss2): 
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downwelling area shaded; contour interval is 2 m, maximum is 1 1  m. 
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time. Later on the kinetic energy distribution within the eddy core follows the same time 
evolution as in the A0 experiment. On the other hand the kinetic energy maximum 
associated with the patch of inertial waves propagating upwind significantly increases. 
It attains the same value as the one within the eddy core at f = 12 inertial periods and 
continues to increase while the latter keeps oscillating. Therefore after this time, the 
‘exponential-like’ growth of the kinetic energy maximum displayed by the curve A1 on 
figure 13 is related to the kinetic energy increase of this patch, which is entirely due to 
the instability mechanism. Within the last 10 inertial periods the kinetic energy 
maximum of this patch has grown by a factor 4.5 (figure 14b), resulting in an effective 
growth rate of 0.012f for the r.m.s. velocity. Amplitude of the mixed-layer depth 
variations within the eddy is similar to the one displayed by A0 (less than 6m). 
However, the amplitude of the mixed-layer depth variations associated with the patch 
of waves propagating upwind increases from 3.6 m to 16 m within the last ten inertial 
periods (figure 14c), leading to a growth rate of 0.0237f. Note that the downwellings 
are more stiffened than the upwellings. As in most realistic cases involving a spectrum 
of lengthscales, those growth rates are smaller than the theoretical maximum value of 
0.034f corresponding to our parameters T* = 0.24 and v* = 0.083. 

These results reveal that the inertial waves trapped within the anticyclonic eddy are 
weakly affected by the instability mechanism. Indeed the back and forth propagation 
of these waves (induced by the vorticity effects) completely inhibits the efficiency of the 
instability mechanism. On the other hand, as soon as a patch of inertial waves has been 
able to escape from the eddy area, the forced instability mechanism can work 
efficiently. 

Let us examine now the situation with a cyclonic eddy, experiment C1. The time 
evolution of the kinetic energy distribution does not differ from experiment CO during 
the first four inertial periods. Later on, the kinetic energy decrease near the eddy centre 
is larger in this experiment: the decrease attains a factor three (instead of two in the 
CO experiment) within 20 inertial periods. As in CO, an energy maximum appears on 
the southwest edge of the negative vorticity ring (figure 15a). After about 10 inertial 
periods it slowly moves to the south outside the eddy area and its magnitude strongly 
increases (figure 15b): it is twice as big as the one in CO experiment at t = 10, and 3.5 
times larger at t = 20 inertial periods. The curve C1 in figure 13 is related to the time 
evolution of this maximum. As was the case in experiment Al ,  the inertial waves that 
have escaped from the eddy area and are propagating against the wind have an 
increasing amplitude owing to the forced instability (see figure 15a and b). At t = 20 
inertial periods the amplitude of this path is not far from the maximum inside the eddy. 
The effective growth rate for its r.m.s. velocity is 0.013fover the last 10 inertial periods, 
not far from the value found in experiment A 1. On the other hand, the growth rate of 
the energy patch attached to the eddy is smaller (only 0.007f). 

The most remarkable feature of the C1 experiment is the large (36 m) mixed-layer 
depth variations associated with small spatial scales on the east edge of the eddy core 
at t = 20 inertial periods (figure 15c). Small scales were present in experiment CO 
(figure lob) but their amplification in C1 results from the wind-forced instability. The 
large mixed-layer depth variations are associated with a secondary kinetic energy 
maximum that merges with the southwestern maximum during the last five inertial 
periods (figure 15b). This phenomenon has been found to be robust in a wide range of 
parameters (eddy vorticity, Rossby radius, wind stress). 

This short analysis of the A1 and C1 experiments reveals some resemblances and 
also significant differences between the anticyclonic and cyclonic eddy cases. In both 
cases, the inertial waves that have been expelled from the eddy and propagate against 
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FIGURE 15. Experiment C1: kinetic energy (integrated over the mixed layer depth and averaged one 
inertial period) with shaded area indicating energy higher than the background (> 0.1 1 m3 ss2). (a)  
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interval is 0.1 m3 s-'. (c )  Is the mixed-layer depth perturbation h-h, at t = 20 inertial periods, with 
downwelling area shaded; contour interval is 3 m, maximum is 30 m. 
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the wind grow. However, it should be noted that the expulsion of waves from the 
cyclonic eddy is less efficient than in the anticyclonic case as shown by the A0 and CO 
experiments. This explains the smaller kinetic energy values attained by these waves in 
the C1 experiment at t = 20 inertial periods, compared with Al .  However, the 
dynamics of the inertial waves within the eddy is very different in A1 and C1. In the 
core of the anticyclonic eddy the instability mechanism is inhibited, as shown by the 
A0 and A1 experiments. In the cyclonic case the combination of the eddy dynamics and 
the forced instability generates a quite complex behaviour. There is a slight growth of 
the energy maximum, but also a large growth of small-scale upwellings and 
downwellings. 

The efficiency of the instability mechanism has been assessed by running a large 
number of numerical experiments. A time-varying wind stress has the same effect as in 
93.1. The energy level of the spatially uniform inertial oscillations in the far field is 
much higher, but the qualitative behaviour of the response and the amplification 
compared to the background are unchanged. A large decrease in energy is found from 
cases A1 and C1 (7* = 0.24) to cases A2 and C2 (7* = 0.2). This confirms the strong 
dependency of the growth rate (as the square of T * )  in dissipative regimes. Enhanced 
friction in experiments A3 and C3 (v* = 0.33) lowers the energy level, but even in this 
very dissipative case there is still twice more kinetic energy in experiments forced by 
7 / h  compared with experiments forced by 7 /h , .  Increasing the dissipation most 
dramatically affects the amplitude of the mixed-layer depth variations in the cyclonic 
eddy. At t = 20, that amplitude is 6.6 m in experiment C3, compared with 36 m in C1. 

5. Conclusion 
The purpose of this paper was to investigate a new forced instability mechanism that 

affects inertial oscillations in the upper ocean mixed layer, allowing the waves 
propagating against the wind to extract energy and grow. This mechanism had first 
been examined by KT93 in a particular situation : wind blowing over a mesoscale one- 
dimensional jet. We have shown here that this mechanism is far more general. The only 
required ingredients are a windstress acting for several inertial periods and an existing 
spatial variability of the inertial motions. 

In a shallow-water model, the physics behind this mechanism are quite simple. The 
ratio 7 / h  of the wind stress and the mixed-layer depth produces an acceleration or 
deceleration of the mixed-layer velocity u. For inertial waves propagation against the 
wind, h has a phase lag of 7t relative to u leading, over an inertial period, to a net kinetic 
energy flux from the wind to the inertial oscillations. Therefore, the instability happens 
in a shallow-water model only when the forcing is entered over the true depth h of the 
mixed layer instead of the reference depth h,. 

An empirical formula for the maximum theoretical growth rate of the instability is 

with 7* the non-dimensional wind stress and v* the non-dimensional dissipation. In the 
inviscid case, the maximum growth rate f7* is found in the limit of large wavenumbers. 
In the viscous case, inertial resonance leads to the selective amplification of horizontal 
scales close to the Rossby radius of deformation in a wide range of parameters. 

The present paper was restricted, for simplicity, to the framework of shallow-water 
dynamics. KT93 have found the same instability in a fully stratified numerical model. 
In that case, the vertical advection of the momentum associated with the sheared 
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Ekman velocities at the base of the mixed layer appeared to be the essential mechanism 
for instability, more than the variable mixed-layer depth h. This has yet to be confirmed 
by analytical calculations. Moreover, the fully stratified model shows that the rate at 
which energy leaves the mixed layer depends mainly on the stratification (Gill 1984). 
The equivalent v is small when the inertial energy is confined to high vertical modes, 
which is the case when the sub-surface maximum in the Brunt-Vaisala frequency 
profile is sharp and shallow. A small mixed-layer depth h, and a small v are achieved 
only in spring or summer conditions, when the seasonal thermocline is shallow and 
thin. Since high wind stress is found mainly in winter conditions, the instability of the 
inertial oscillations may happen only occasionally and locally in the ocean. 

Our results show, however, that even when the growth rate is small ( z  0.02f), the 
instability qualitatively modifies the behaviour of the wind-forced oceanic response. 
This has been demonstrated in the presence of a coast or mesoscale eddies, which both 
can generate variability at wavenumbers k* of order one. For coastal dynamics, the 
most striking result is the asymmetry between the (unstable) case of onshore winds and 
the (stable) case of offshore winds. In the presence of mesoscale eddies, instability can 
lead to energy maxima located outside the mesoscale structure and propagating against 
the wind. In both cases, the combination of instability and nonlinear advection leads 
to an enhanced amplitude of the mixed-layer depth variations. 
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